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The nonlinear problem of the steady-state interaction of a closed fluid-filled cylindrical 
elastic membrane with a slow viscous shear flow has been solved by a series-expansion 
technique. The problems of successive orders were both formulated and solved by a 
symbolic manipulation program, and the calculations were carried to sixth order in a 
dimensionless parameter related to the applied shear rate. Moderately large 
deformations (aspect ratios approaching 3) fall within the range of this analysis, which 
yields the dependences of the following global variables on the system parameters: 
membrane deformation, orientation, and strain, as well as tank-treading frequency, 
and mean internal pressure. The solution for the flow field around an isolated capsule 
is also used to calculate the apparent viscosity of a dilute suspension of flexible 
cylindrical particles, which yields the paradoxical result that the apparent viscosity 
decreases as the internal viscosity increases. 

1. Introduction 
We consider the deformations of thin closed elastic membranes filled with 

incompressible Newtonian liquids, when such bodies (‘capsules ’) are placed in two- 
dimensional shear flows of another incompressible Newtonian liquid - under con- 
ditions when the induced deformations are large. This problem is motivated primarily 
by our interest in the flow of blood wherein a Newtonian fluid (the plasma) carries in 
suspension several kinds of capsules (the formed elements) including erythrocytes, 
leukocytes, and platelets. In particular, much attention has been focused in recent years 
on the deformability of erythrocytes (Schmid-Schonbein & Gaehtgens 198 1) as this 
property is vital to their physiological function (Cranston et al. 1984). An assay of 
erythrocyte deformability has been devised employing an instrument called the 
Rheoscope : this is basically a counter-rotating cone-and-plate viscometer which 
subjects isolated erythrocytes to graded levels of fluid shear and measures the resulting 
cell deformations and motions (Fischer, Stohr & Schmid-Schonbein 1978; Sutera et al. 
1985). From Rheoscope measurements it is possible to calculate the viscoelastic 
characteristics of the erythrocyte membrane, but this requires mathematical modelling 
and analysis so that the global experimental measurements can be interpreted in terms 
of local cellular properties (Tran-Son-Tay, Sutera & Rao 1984; Tran-Son-Tay et al. 
1987; Sutera, Pierre & Zahalak 1989). The objective of the work reported in this paper 
was to carry out a detailed mathematical investigation of a simplified model resembling 
an erythrocyte in the Rheoscope, in the expectation that the results obtained would 
provide some insight into the many complex interactions which govern the shear- 



74 P. R. Rao, G .  I. Zahalak and S .  P. Sutera 

induced motion and deformation of an erythrocyte. In addition, of course, the problem 
of flows containing flexible particles is one of general interest in suspension rheology. 

The major difficulty in constructing an accurate model of sheared erythrocyte 
suspensions is that these particles are very deformable indeed (Fischer & Schmid- 
Schonbein 1977). Consequently, no complete analysis of this problem - which 
calculates grossly deformed capsule shape from the undeformed shape, membrane 
properties, and shear flow intensities-has yet been published. A number of 
approximate analyses, both computational and analytical, have appeared in the 
literature; we have reviewed these studies in a previous paper on this topic (Zahalak, 
Rao & Sutero 1987) and will not repeat this survey here. Let it suffice to say that all 
previous analyses either (i) were limited to small deformations of the capsules, or (ii) 
assumed apriori the deformed shape and surface velocity field of the deformed capsule. 
The prior work most closely related to our present investigation is that of Barthks- 
Biesel and her collaborators (Barthes-Biesel & Rallison 198 1 ; Barthes-Biesel & Sgaier 
1985) who have applied perturbation analysis to calculate the deformations of initially 
spherical viscoelastic capsules in shear flows. Their work is an extension of Taylor’s 
classic analysis of liquid droplets (Taylor 1932), and like Taylor’s work it is limited to 
small capsule deformations. Recently, analyses of genuinely large deformations of 
fluid-filled capsules have been carried out using the technique of boundary-integral 
equations (Li, Barthes-Biesel & Helmy 1988 ; Pozrikidis 1990). This approach seems to 
have great potential but (with one exception) all the problems solved with it so far have 
assumed rotational symmetry, which does not occur in the case of an erythrocyte 
embedded in a shear flow. (The one exception is a very recent abstract (Uijttewaal, 
Nijhal & Heethaar 1992) describing the boundary integral solution of the problem of 
a liquid drop near a rigid boundary.) 

We have undertaken an extensive analytical study of a simplified model of a 
viscoelastic capsule in a slow viscous shear flow, which is described in detail in Rao 
(1990, 1991). Although we considered both transient and steady-state behaviour, only 
the latter will be discussed in this paper. Our study treated a thin viscoelastic membrane 
with the undeformed shape of a long circular cylinder, which is filled with a viscous 
Newtonian fluid and placed in a shear flow of another Newtonian fluid; the axis of the 
cylinder is perpendicular to the plane of the flow. The membrane was assumed to be 
of an area-conserving Kelvin-type viscoelastic material which has been proposed as a 
model for the erythrocyte membrane (Evans & Skalak 1980). The major simplifying 
assumption of our analysis was that the flow inside and outside the membrane was two- 
dimensional. Consistent with this, we assumed further that the axial strain in the 
membrane was constrained to be independent of position. When combined with the 
area-conservation assumption this implies that the circumferential, as well as the axial, 
membrane strain can vary with time but not with position on the membrane. An 
immediate consequence of these assumptions is that the membrane strain rate is zero 
in a steady state. That is, the viscous membrane stresses vanish, and the membrane 
behaves as though it were made of a purely elastic material. Therefore, although the 
analysis to be presented in this paper is embedded in a more general analysis, we will 
restrict discussion to elastic membranes. No a priori assumptions were made about the 
shape or velocity of the deformed membrane cross-section and the results are expected 
to be at least qualitatively valid indications of the complex relations between 
membrane deformation, stress, internal pressure, shear rate, fluid viscosities, and 
membrane elasticity. 

Our approach was to use a combination of perturbation analysis and computer 
algebra. As in several previous studies, the field variables of the problem were 



Large deformations of elastic cylindrical capsules in shear flows 75 

expanded in asymptotic power series of a dimensionless shear-rate parameter. The 
restriction to small deformations was removed by carrying out the expansions to 
relatively high order yielding four non-zero terms for each field variable, and 
subsequently applying conformal transformation to the solution. In order to handle 
the massive algebraic manipulations inherent in this approach we employed a symbolic 
manipulation program (REDUCE 3.1, Rand Corporation, Santa Monica, CA, 1983) 
which both formulated the problems for the higher-order terms and solved them. We 
have previously published a report (Zahalak et al. 1987) of a similar investigation 
which applied this technique to a simpler problem than the one considered here, 
namely deformations of an inextensible, initially pressurized cylindrical membrane by 
a viscous shear flow. In this paper, we deal with an elastic membrane which is initially 
unpressurized. The basic technique of analysis, however, is the same as in our earlier 
paper and the reader may refer to the latter for many of the details. As a particular 
application of these results we calculated the apparent viscosity of a dilute suspension 
of flexible capsules, and how this viscosity varies with the parameters of the system. 

2. Formulation 
Figure 1 defines the geometry of the problem. Cartesian coordinates (2,p) and polar 

coordinates (?, 6) are established in the plane of an undisturbed shear flow defined by 
ti, = yy ,  where y is a shear rate and ti, is the horizontal component of the fluid velocity. 
Unit vectors associated with these coordinate systems are, respectively, (ef, eG) and 
(e?, ee). (Throughout this paper superposed carets will denote physical variables, and 
the absence of carets will denote corresponding dimensionless variables; the single 
exception is p, which denotes the physical shear rate.) A cylindrical capsule consisting 
of a thin membrane filled with an incompressible Newtonian liquid of viscosity i$ is 
placed in the shear flow with its axis perpendicular to the plane of flow and lying in the 
zero-velocity plane. When unloaded the cross-section of the capsule is circular with 
radius ci. The presence of the capsule will disturb the shear flow and, in turn, stresses 
exerted by the shear flow will deform the capsule into the quasi-elliptical shape shown 
in figure 1. Unit vectors tangent and normal to the deformed membrane are defined as 
eB and e, (the former is in the counterclockwise direction while the latter points into 
the capsule). 

To describe the mechanical properties of the membrane, we will adopt the well 
known model of Evans & Skalak (1980) for an elastic membrane. Let A, denote the 
stretch ratio of a membrane element in the circumferential direction (that is, in the 
direction of eB) and A, the stretch ratio in the axial direction, perpendicular to the plane 
of flow. The membrane is assumed to be two-dimensionally incompressible (i.e. area- 
conserving) which implies that A, = hi1. Both A, and A, are assumed to be principal 
stretch ratios, and if 1; and Q represent the corresponding membrane tensions (force 
per unit length) the constitutive equations of the membrane material are 

r; = f+$(A2-A-2  >, (1) 
Q = f- $‘(A2 - p), (2) 

or r;-Q = &p-jp), (3) 
where A = A,, f is an isotropic surface tension, and 6 is the surface shear modulus of 
elasticity (force/length). 

The mass of the membrane is assumed to be negligibly small so that each element of 
the membrane must be in equilibrium under the action of membrane tensions and the 
pressures and viscous stresses which are exerted by the external and internal fluids. As 
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e; 

t 2 

FIGURE 1. Flow geometry. Cartesian and cylindrical polar coordinates are denoted by a,$, and ?, 8, 
respectively. Arclength along the membrane is i (positive in the counterclockwise direction), and 
distance normal to the membrane is ri (positive in the inward direction); e denotes a unit base vector 
in the direction indicated by the subscript. The axis of the cylinder of initial radius B is contained in 
the plane of zero velocity ( j  = 0), and the deformed shape is described by ? =A@, wherefis the shape 
€unction. 

noted previously, inertial effects are considered negligible, and therefore the internal 
and external fluids are governed by the equations of creeping (Stokes) flow. Further, 
as the flow is both incompressible and two-dimensional, the internal and external 
velocity fields can be expressed in terms of scalar internal and external stream 
functions, '4 and '$, respectively. (Throughout this paper the superscripts i and e 
placed before a variable refer, respectively, to the interior and exterior of the capsule.) 
The formulation of this problem follows closely that which we have published 
previously for an inextensible membrane (Zahalak et aE. 1987) and therefore we will list 
the final equations directly. We first define dimensionless variables as follows : all 
lengths are normalized by the undeformed capsule radius 8, pressures and viscous 
stresses by G/8, membrane tensions by e, stream functions by 86/e,2, and velocities by 
G/',k. There are two important dimensionless parameters in this problem: the 
dimensionless applied shear rate c = dTe, i i /6  and the viscosity ratio p = ',L/',C. In terms 
of these dimensionless variables the problem to be solved is as follows. 

Find a simple, closed curve I': r =AB) (the capsule shape), internal stream function 
i$ and pressure 5, external stream function '$ and pressure 'p, membrane tensions P 
and Q, and membrane stretch ratio A satisfying the following equations and boundary 
conditions : 

V4 '31. = 0 and U x V2 '$ez = Vep outside r, (4) 
V4 '$ = 0 and pV x V2 i$e, = V'p inside r, ( 5 )  
e $ + c r 2 ( 1 - ~ ~ ~ 2 B ) / 4  and 'p+0 as r+m.  (6) 
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euu, = e U s ( E , P ) ,  
i dP/ds = (e,  - e ~ .  e,y) - P(e, - 7. es), 

K P  = ’ P P - ~ P ,  
P - Q = h 2 - h - 2 ,  

Further, we impose a ‘global equilibrium condition’ of the form 

and require also that ’$ have no singularities inside the membrane. 

(e.g. i $ , r  = ailC./c‘r). Also, 
In these equations the comma notation is employed to indicate partial differentiation 

K = P- l  - - (f” + 2fo -ff,,>/(f2 +f$ 

eU, = (e$,f&- “ 1 C l . r f 2 ) / C f ( f 2  +f$) 

(15) 
is the membrane curvature, and p ,  7 and ds represent, respectively, the pressure, fluid 
viscous stress tensor, and membrane arclength. Finally, 

(16) 
is the tangential external velocity component on the membrane. The viscous shear 
stress components appearing in (1 1) can be expressed in terms off ,  ’$ and “$; these 
expressions are given as equation (19) of Zahalak et al. (1987). 

Some comments on the significance of these equations and boundary conditions, 
(4)-(14), are in order. Equations (4) and (5 )  are simply the equations of creeping flow 
which govern the motions of the internal and external fluids, written in terms of the 
stream functions and pressures. The first of the limit statements (6) says that the 
velocity field far from the capsule becomes a simple shear flow, whereas the second 
states that pressures are measured with respect to the constant remote pressure. 
Equations (7)-(10) are kinematic boundary conditions; the first and second of these 
assert continuity of the fluid velocity across the membrane, and (9) expresses the 
condition that in the steady state the membrane is a streamline. Equation (10) follows 
from the assumption that h is independent of position, and asserts that the membrane 
and fluid speeds are constant on the membrane (see Tran-Son-Tay et al. 1987). (Note 
that since the internal and external fluid velocities are equal on the membrane by virtue 
of (7) and (8), the superscript e could be replaced by i in (10) and (16).) Equations (1 1) 
and (12) express the equilibrium of forces acting on the membrane. The first of these 
is for the direction tangent to the membrane, and the second is for the normal 
direction. It can be shown that the normal viscous stresses of the external and the 
internal fluids make no contribution to the second equilibrium equation, as a 
consequence of the fact that the membrane speed is constant along the membrane. 
Equation (13) is simply the dimensionless form of the constitutive relation, ( 3 ) .  
Equation (14) is a global equilibrium condition which states that the axial force due to 
the internal pressure acting on hypothetical end-caps of the capsule is balanced by the 
axial membrane tension acting around the circumference of the capsule. This boundary 
condition neglects the axial force on the hypothetical end-caps due to the external fluid 
pressure, and some justification for this assumption will be provided in $6. Finally, we 
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impose a condition of global volume conservation for the fluid inside the capsule in the 
form Y = Vu, so d = dU(9'/Y) or d = rch. 

where Y and d represent the volume and the cross-sectional area of the capsule, 
respectively, the subscript u refers to the undeformed state, and the overbar denotes the 
angular average of a quantity, (3) = ( 1 / 2 7 ~ ) ~ 3 * ) d O . ~  

So, finally f" = A, (17) 

3. Series expansions 
The problem we have formulated is a difficult one in which complicated boundary 

conditions must be imposed on an a priori unknown boundary. As in our previous 
study of a pressurized, inextensible membrane (Zahalak et al. 1987), we will construct 
the solution by expanding all field variables in asymptotic series of a gage function 6(e). 
In contrast to the previous problem however, the forms of the expansions (including 
the form of the gage function) in the current problem are not obvious. There is, of 
course, no mechanical procedure for determining the correct forms of the expansions; 
one must assume a form, insert this form into the equations and boundary conditions, 
and if this leads to a sequence of solvable, well-posed problems on the terms of the 
expansion, then one assumes a posteriori that the postulated form is correct. 
Consideration of various expansions led us to the following : 

f = 1 + p) + 62f(2) + 83f(3) + . . . , 
e$k = 63 e$k(3 )  + s4 e$k(4) + . . . , 
i$k = 63 i$kr(3) + 64 i$k(4) + . . .) 

P = 62P(2) + 63P'3' + s4P'4' + . . . , 
Q = 62Q(2) + 63Q(3) + s4Q(4) + . . ., 
h = 1 + 62h'2' + 

(1 8) 
(19) 
(20) 
(21) 
(22) 
(23) 
(24) 
(25) 

ep = 63 e p ( 3 )  + # e (4) 

ip = 6 2  i p ( 2 )  + 6 3  6 p ( 3 )  +64%(4)+. . . ,  

p + ... , 

+ . . . , 
where 6 = 8. It is implied that the leading terms of the right-hand sides of (1 8)-(25) are 
non-zero. Expansions of this form permitted the construction of a consistent recursive 
algorithm through which terms of any order could be calculated, and the solution has 
been carried out up to terms of O(s4) in the shape function and O($) in the stream 
functions. To carry out the solution beyond the lowest terms requires a formidable 
amount of algebra, so the procedure was programmed in REDUCE, a symbolic 
manipulation program, which both formulated the successive problems and solved 
them. The algorithm is straightforward but lengthy; specific details and the REDUCE 
program listing are available in a technical report by Rao (1990). 

Space limitations preclude any detailed discussion of the solution algorithm, which 
was essentially similar to that described in Zahalak et al. (1987). In this section we will 
merely point out a few salient features of the analysis; a more detailed exposition of 
the solution can be found in Rao (1990, 1991). The solution begins by assuming that 
the membrane shape function of order m can be written as a trigonometric series 

m 

f(*) = C,, + C (S, ,  sin no+ C,, cos no), (26) 
n=1 

t In Rao (1990, 1991) the problem posed in (4t(14) was solved with the auxiliary condition 
cfz) = 1 instead of (17). These resu!ts are easily converted to those presented in this paper by 
replacing ri in Rao (1990, 1991) by A%. 
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and that both the external and internal stream functions can be written in the form 

$(m) = A, ,  + C ( A l n  r-n cos n8 + A,,  rn cos n8 + B,, r-,  sin n8 + B,, rn sin no) 
CG 

n=l 

m + C, log r + (r2 - 1) A,, + C {A , ,  r- ,  cos n8 + A,,  rn cos n8 

+ B,, r-,  sin n8 + B,, r" sin no} + C, log r . 

[ n=l 

(27) I 
Equation (27) is a general solution of the biharmonic equation satisfied by the stream 
functions (Duff & Naylor 1966, p. 143), and the logarithmic terms therein can be 
deleted on the basis of the imposed boundary conditions (Zahalak et al. 1987). The 
coefficients of the trigonometric terms in (26) and (27), must be determined to solve the 
problem. These assumed forms of shape and stream functions are inserted into the 
differential equations and the boundary conditions of the problem ((4)-( 17)) and the 
coefficients of like powers of 6 are extracted to yield a sequence of perturbation 
problems of increasing order. In this process the boundary conditions on the unknown 
boundary r = f ( B )  are expanded in Taylor series and applied on the known fixed 
boundary r = 1, as in Zahalak et al. (1987). 

The specific solution strategy involves expressing all field variables in terms of the 
coefficients of the shape functions, S,, and C,,, then establishing equations satisfied 
by these coefficients, using the differential equations and the boundary conditions of 
the original problem, and finally solving for S,, and C,, to define all the field 
variables. In this process it becomes clear that there are only a finite number of non- 
zero trigonometric terms in the solution for each field variable at any order. An 
interesting consequence of the fact that the expansions (( 18)-(25)) of different field 
variables begin with leading terms of different orders is that in order to completely 
determine the solution of order m the problem of order rn + 3 must be examined. In 
particular, to determine the leading term of the shape function the problems of order 
6 to 64 must be examined. The details are explained in Rao (1990, 1991). 

In this manner we were able to obtain the following forms of expansions for all the 
field variables up to third order in 6: 

O(6) : f ( l )  = S,, sin 28, (28) 



80 P. R .  Rao, G. I. Zahalak and S. P. Sutera 

The coefficients Sii and Cii appearing in the above expressions are constants depending 
on /I. Specifically, ] (41) 

S - 6-f C - 6-’( 
1 2  - > 22 - 1 +PI, c,, = -m, 

S,, = 6-i:- 13/288-$(1 +,!I),, S,, = :(l +,!I), S,, = -5/48. 

As in our previous analysis of the pressurized, inextensible membrane, we employed 
in this study a simple conformal transformation which maps to first order the region 
outside the deformed capsule onto the region outside the unit circle (see Zahalak et al. 
1987, $5) .  This enabled us to improve the accuracy of most of the expansions we had 
generated in the original physical variables r and 6’ by straightforward algebraic 
manipulations not requiring the solution of any additional boundary value problems. 
The results which follow were computed using conformally transformed expressions of 
our original solutions (see Rao 1990 for details). 

4. Results 
Although the REDUCE computer program yielded ‘exact ’ algebraic expressions for 

each term in the expansions of the field variables, the complexity of these expressions 
grew extremely rapidly with order, to the point where it is impractical to display the 
solution beyond O(S3). With such complex results what assurance do we have that they 
are correct? It is obvious from the forms of the stream functions that the differential 
equations are indeed satisfied, so the question of validity devolves to the boundary 
conditions. We have used a computational test, described in Zahalak et al. (1987), to 
demonstrate in several distinct cases that the error in the boundary conditions is O(8’) 
as S approaches zero. (See figure 2 of the cited reference, and figure 5.35 of Rao 1991.) 
This demonstrates that the boundary conditions are satisfied up to O(66), and on this 
basis we accept our expansions as correct to this order. 

Another question concerns the range of validity of the expansions: How large can 
6 be if we are to be assured of adequate accuracy? This is a difficult question, the 
answer to which depends on the accuracy criterion, the variable being evaluated, and 
the values of the system parameters. Having available four-term expansions (from 
solutions to problems up to the sixth-order in S) we have been able to examine the 
question of accuracy in some detail (Rao 1991), but an adequate discussion of our 
investigations would take us too far afield. We will qualitatively summarize our 
conclusions by stating that for accuracy (i) e should be less than about 0.25 at p = 2, 
and less than about 0.5 up to p z 1, and (ii) the field variables listed in order of 
decreasing accuracy are as follows : f, P, ‘p, en - ‘7 - e,, %, en - i ~ .  e,. Thus, for example, for 
a given set of parameters and desired accuracy, the maximum allowable value of e (or 
S) will be less for the shear stress on the membrane than that for the membrane shape. 
In general, it may be assumed that the results displayed in this paper are correct within 
graphical accuracy. In particular, our results describe the deformed membrane shape 
up to aspect ratios of 2.6 when /3 = 0. 

The solution up to O(S3) was presented earlier in (28)-(41). An analysis of the 
highest-order terms is presented in Rao (1990). Tables 1 and 2 list, respectively, the 
resulting terms of the external and the internal stream functions up to O(66). Note that 
the complex Goursat representation (Zahalak et al. 1987) is used to represent both of 
these functions. The steady-state variations of the ‘local ’ variables (velocity, pressure, 
fluid stresses on the membrane, membrane tension) were found to be qualitatively 
similar to those reported for the pressurized capsule in Zahalak et al. (1987). Indeed, 
it can be shown that toJirst-order the solutions for these local variables in the present 
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where 

TABLE 1. Coefficients A,, and B,, in the external stream function 

e$ = Re C 8 m { e ~ m ( ~ )  + z ~ @ ~ ( z ) } ,  
cc 

m=3 
m m 

'x,(z) = C A,, zn and ?@,(z) = C B,, zn. 
n=-m n=-m 

Note that A,, and B,, are completely determined by S,, and CtJ, the coefficients in the membrane 
shape function which are given by (41). These relations between A,,,B,, and S,,,C,, are 
independent of the material parameters. 

$ n ; m +  3 4 5 6 

TABLE 2. Coefficients A,, and B,, in the internal stream function 
n 

'I) = Re C ~ P { ~ ~ , ( z ) + z ~ @ ~ ( z ) } ,  
m-3 

m m 
where ' ~ , ( z )  = C Amnzn and '@,(z) = C B,,za, 

See note in table 1. 
n=-m ,=-m 

paper can be obtained from those given in Zahalak et al. (1987) by simply introducing 
the parameter transformation 8 = 6-b ,  where B = (i,',u/p0) is the dimensionless shear 
rate of the latter paper; this is a direct consequence of the fact that in the present 
solution the first-order variation of the internal pressure was found to be 6fP. 
Consequently, with one exception, we will not provide displays of the local variables, 
which may in any case be found in Rao (1991). The exception is the circumferential 
membrane tension, P, which is exhibited in figure 2, and has a somewhat different 
behaviour from the corresponding variable in the earlier problem of the initially 
pressurized membrane. For every e and /l the membrane experiences no compressive 
stress. The minimum tension occurs close to the region of maximum curvature and vice 
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FIGURE 2. Membrane circumferential tension, as a function of e and /3. 

versa. The mean tension increases strongly with increasing e and weakly with 
decreasing p, and is never negative (i.e. compressive). 

Five ' global' variables which characterize the overall deformation of the membrane 
are displayed in figure 3. These are the aspect ratio, the orientation, the tank-treading 
frequency, the mean internal pressure, and the circumferential stretch ratio. The 
membrane deformation is described by its aspect ratio, D = (rmaz/rmin) in figure 3 (a),  
which shows the dependence of this variable on e and p. The deformation increases 
with e (that is, with the applied shear rate, the external viscosity, and the inverse of the 
membrane shear modulus), rapidly at lower values of e and more gradually at higher 
values of e. The deformation decreases slightly as increases. Coincident with an 
increased deformation at large E is a decrease in the angle of inclination of the 
membrane, Omax (see figure l), with respect to the shear direction. Figure 3(b) shows 
this angle as a function of e and p.  The membrane approaches an orientation of 45" 
as s+O for all p, and this angle decreases as either 6 or p increases. In contrast to its 
effect on the shape, the viscosity ratio has a relatively strong effect on capsule 
orientation. 

The tank-treading frequency (G) is the rate of rotation of the membrane around its 
interior at steady state. It is related to the tangential membrane velocity as follows. If 
G, mtig,, and %? are, respectively, the dimensional tank-treading frequency in rad s-l, 
tangential membrane velocity, and the membrane circumference, then 

1 

G = "0,2n/%, (42) 
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FIGURE 3 .  Global Variables. The influence of e and /3 on (a) the membrane deformation, D (the aspect 
ratio) ; (b) angle of inclination, B,,,; (c) tank-treading frequency, w ; ( d )  mean (area-averaged) internal 
pressure, ( ' p ) ;  and (e) circumferential stretch ratio, A,  are illustrated for /3 = 0, 0.5, 1 and 2. In all 
cases the curve for higher /3 is lower. For a given /3 as e increases all the variables shown increase, 
except B,,, which decreases. 

By non-dimensionalizing 4 by 6 / d e , &  we obtain the dimensionless tank-treading 
frequency, 

w = mu,/h. (44) 

The membrane velocity at steady state can be computed from the stream function i$ 
as 

(45) m 2  m z 1  . Im%I = ( u, + %)2 = {(" $,dr);=f(o) + ( - $,,);=f(,,P. 
Equivalently, the membrane speed can be computed from the exterior stream function, 
'$, and is independent of 0, as indicated by (10). Although the solution for w is carried 
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out to sixth-order, the even terms (in 8) of the series turn out to be zero, as they must 
be from symmetry considerations. Consequently, only three non-zero terms of w are 
known. In order to extend the range of validity of this limited series for larger values 
of shear rate, we apply the well-known technique of PadC’s approximants (Bender & 
Orszag 1978). It has been demonstrated that Pade’s approximants, for certain infinite 
series whose first few terms are known, yield a good approximation to the sum of the 
series even if the sum of the known terms of the series is a poor approximation. Pade’s 
approximants Y ( f )  to seriesfwhose first two or three terms are known are defined as 
follows. I f f=  a18+a,S2, then Y ( f )  = (a~8) / (a l -a ,8) ,  and i f f= a , + a , 6 + ~ , 6 ~ ,  then 
P(f) = (aqa, +(a? - a, a,) 8)/(a, --a, 6). We applied Pade’s approximation to the 
tank-treading frequency (w) ,  and also the mean internal pressure, ( i p )  and the 
circumferential stretch ratio, A. Owing to symmetry restrictions ( ‘ p )  and h contain 
only terms even in 8, as was the case for w .  In the remainder of the paper when we refer 
to values of any of the above three variables we mean those of their PadC’s 
approximants. 

The variation of w with E and p is displayed in figure 3 (c). At constant /3, w increases 
monotonically with E ,  and indeed is almost proportional to E when /3 = 0. At constant 
E ,  increasing /3 decreases w ,  as one might expect intuitively. Figure 3 (d) shows the area- 
averaged mean internal pressure, (ip) which increases with E and decreases with p. 
Finally, figure 3 (e)  shows the relationship between the circumferential stretch ratio, A, 
and the parameters E and p. As E increases so does h for all /3, but the strain ( A  - 1) 
never exceeds 30% for the range of e examined. Note, however, that h is much more 
sensitive to /3 than is D. 

5. Apparent viscosity of a dilute suspension 
To conclude this paper we will use our solution for the steady shear flow about a 

flexible cylindrical capsule to calculate the apparent viscosity of a dilute suspension of 
such particles. The suspension must, of course, be dilute because our solution refers to 
an isolated capsule in an unbounded flow, and interactions with neighbouring particles 
which would be important in a concentrated solution are not accounted for. The 
relations between the bulk flow properties of a suspension and the micromechanical 
properties of suspended particles are of great interest in suspension rheology. In spite 
of the somewhat artificial two-dimensional nature of our model, these calculations can 
offer some interesting qualitative insights into this important problem, particularly 
because our results are not restricted to small deformations. 

The details of the calculation of the apparent viscosity, can be found in (Rao 
1991). The apparent viscosity is defined as the ratio of the mean shear stress to the 
mean velocity gradient in a steady shear flow of the suspension (Lightfoot 1974). 
Following common rheological practice we express the apparent viscosity in terms of 
a parameter called the ‘intrinsic viscosity’ I.], defined by 

I.] = (“6 - e6)/(ebc), (46) 
where c is the volume fraction of the suspended particles (per unit width, in our two- 
dimensional problem). The calculations in Rao (1991) show that 

(47) I.] = 2{ 1 -;(;€)! (1 + 12p) + O(4))  
for a suspension of flexible cylinders and, further, that if the cylinders are rigid and of 
circular cross-section then I.] = 2. These results can be compared with the well-known 
fact that for dilute suspensions of rigid spheres b] = 2.5 (Lightfoot 1974). 
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FIGURE 4. Dependence of the intrinsic viscosity b] on E and /3. For fixed membrane and fluid 
properties the apparent viscosity decreases with shear rate. For fixed shear rate, membrane stiffness, 
and external fluid viscosity, the apparent viscosity decreases with increasing internal fluid viscosity. 
Dashed lines indicate probable limits of accuracy of (47). 

In figure 4 we have summarized the dependence of b] on various material and flow 
parameters, according to (47). Note that if both c and /3 are large, then the deviation 
of I.] from 2 is so great4 that the accuracy of the calculation is questionable (that is, the 
unknown terms of O(@ = P) may be important). It is evident that I.], and therefore, 
the apparent viscosity, for a suspension of flexible particles, is lower than that for rigid 
cylindrical particles which, in turn, is lower than that for rigid spherical particles. For 
fixed /3, I.] decreases as the power of the dimensionless shear rate, c. The behaviour 
of I.] with respect to the viscosity ratio, /3, is counter-intuitive. As /3 increases, which 
could occur by increasing the internal viscosity with fixed external viscosity, I.] 
decreases for any given e. The significance of this result is discussed in the next section. 

6. Discussion 
This analysis of elastic capsule deformations in shear flows presents some interesting 

features both from an intrinsic mathematical viewpoint and in relation to experiments 
on erythrocytes. Although the solution involves the analysis of a regular (non-singular) 
perturbation problem, this case of an initially unpressurized two-dimensional capsule 
without bending rigidity is substantially more difficult than when the capsule is 
pressurized (Zahalak et al. 1987). In the latter case the perturbation series is completely 
straightforward with all variables of the same order, O(c), This is also the case for a 
membrane whose elastic resistance is dominated by bending rigidity, as shown by Rao 
(1991). In the present problem, however, one must assume different orders of 
magnitude for different variables (( 18)-(25)) in order to construct a consistent recursive 
algorithm. Apparently these difficulties do not arise in the corresponding three- 
dimensional problems (Barthes-Biesel & Rallison 198 1 ; Barthes-Biesel & Sgaier 1985) 
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Increase in + e,ii t i  d 

D t + J &  

w t - & -  
lul $ - i t  

Change in J. 

4fy, . 1 - . l t  

TABLE 3 .  Summary of interactions at steady state; --f denotes approximately constant. 

where simple perturbation series are assumed with all variables of the same order of 
magnitude in the dimensionless shear rate. The three-dimensional problems, however, 
involve much more difficult calculations and published analyses are confined almost 
invariably to the leading term of the series or, in rare cases, two terms (Barthks-Biesel 
1980). One consequence of the fact that series of several different orders enter our 
problem is that to determine completely all the terms up to a given order m, the 
problems of orders m + 1, m + 2 and m + 3 must be considered; in particular, the first- 
order shape function f(l)  is not determined completely until the fourth-order problem 
is examined. 

In the face of this complexity computer assistance is essential and we have solved this 
problem employing the symbol-manipulation programs, REDUCE, and the techniques 
which we developed previously in treating the problem of an initially pressurized 
inextensible membrane. Complete listings of the programs used in the solution of the 
current problem, both with and without bending rigidity are available in Rao (1990). 
REDUCE both formulated and solved the perturbation problems of succeeding orders 
and enabled us to carry the analysis to the problem of 0(r37), a sufficiently high order 
to accommodate quite large deformation (up to D z 3) .  

While the formulation of the problem we have posed and solved, (4k(17), is for the 
most part straightforward within the context of two-dimensional, incompressible, 
creeping flow, the ‘global equilibrium condition’, (14), merits some additional 
comments and motivation. For a long cylindrical membrane closed by end-caps the 
correct equilibrium condition would be 

Equation (14) neglects the last term - that is, the axial force due to the external 
pressure. It is certainly expedient to neglect this term as our two-dimensional 
formulation gives no information about the pressure distribution on the hypothetical 
end-caps, but one can put forward the following physical arguments to rationalize this 
assumption. First, dimensional considerations suggest that ‘b, the physical external 
pressure, should scale like (“,E,/ri), where 6, is a characteristic velocity. In the problem 
under consideration the obvious choice for 6, is rip, so that the external pressure is of 
the order of e,i2j. We scale the internal pressure as = (G/ri)?, so the condition ‘j? b 
‘8 would be satisfied if (G/ri>ip 9 ‘,i2?p”, where ‘p“ = (“p/‘,iy) is a dimensionless external 
pressure which is presumably O( 1) on the end-caps. Thus, the external pressure could 
be neglected with respect to the internal pressure if 

ip b ripy/G = e. (49) 
An examination of figure 3 ( d )  confirms a posteriori that % is generally greater than e, 
at least on the average, which tends to support our assumption. 
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To require ip % ‘6 (that is, that the internal pressure exceed significantly the external 
pressure at every point on the end-caps) is actually too stringent. All that is required 
for (14) to hold is that the integral of the external pressure - the external force ~ should 
be negligible. The physical nature of our problem suggests that the external pressure 
would be spatially periodic, with regions of positive and negative pressure which tend 
to cancel on integration. As a specific example consider a rigid sphere rotating in a 
shear flow (Lightfoot 1974). In this particular case it is easy to show that the external 
pressure indeed has the postulated spatially periodic character, and that the net axial 
pressure force on each hemisphere is exactly zero (when, as in this paper, the pressure 
is measured with respect to the remote pressure at infinity). The internal pressure, on 
the other hand, has a non-zero mean as shown in figure 3(d) ,  which increases with 
capsule deformation. While these arguments obviously do not constitute a math- 
ematical proof, we believe that they indicate that our particular formulation of the 
global equilibrium condition is not physically unreasonable. 

In attempting to apply our results to the behaviour of erythrocytes in the Rheoscope 
it must be borne in mind that the model we have analysed suffers from at least two 
deficiencies for this purpose : (i) the initial unstressed, unpressurized cross-section of 
our capsule is circular, whereas that of the erythrocyte is ‘dumbbell-shaped’, and (ii) 
our global equilibrium condition, (14), is only a rough approximation of the true 
lateral constraint provided by a compact closed three-dimensional capsule. Never- 
theless the results may describe at least qualitatively what occurs in Rheoscope 
experiments. 

In $4 we presented the behaviour of several non-dimensional variables associated 
with the local and global aspects of deforming cylindrical capsules under steady-state 
conditions. We shall now examine those results in terms of some physical (dimensional) 
variables. These results will then be compared with theoretical and experimental results 
for red blood cells, liquid drops and flexible spherical capsules. We can interpret and 
summarize the interaction of the material parameters, shear rate, and capsule response 
as shown in table 3. 

While most of the effects indicated in table 3 are intuitive, some are not, as in the case 
of a decrease in I.] with an increase in i,k, or the absence of any noticeable change in 
4 with an increase in ‘,k. The paradoxical effect of internal viscosity on intrinsic viscosity 
can be rationalized to some extent. As the intrinsic viscosity is a measure of the 
additional dissipation produced by the suspended particles, one might suppose that it 
increases with the degree of disturbance of the basic shear flow. One might suppose 
further that particles which are elongated and aligned with the flow will produce less 
disturbance, and therefore a lower b]. From figure 3 we can see that an increase in the 
internal viscosity produces only a small decrease in the membrane deformation, but the 
angle of orientation of the membrane with respect to the flow direction decreases 
significantly. Thus, membranes with higher internal viscosity tend to create less 
disturbance of the surrounding flow, and consequently yield lower apparent viscosity 
and b]. We should emphasize, however, that our solution is not valid at high values 
of p, where one would expect b] to approach the value of 2 appropriate for rigid 
spheres. The lack of any noticeable increase in the intrinsic viscosity with an increase 
in the external fluid viscosity may also be surprising. This seems to be a balance of two 
competing effects. As the external viscosity increases at constant shear rate, e increases, 
thus tending to decrease b]. But then /3 also decreases if the internal viscosity is 
constant, tending to increase b]. Note that the apparent viscosity will still increase 
because it is proportional to the viscosity of the suspending medium. These 
considerations suggest that the influence of capsule deformability on suspension 
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viscosity is subtle, and may not be predictable on a purely intuitive basis. Another 
interaction listed in table 3 that needs explanation is the absence of any effect of the 
suspending fluid viscosity on the tank-treading frequency. There exists somewhat 
conflicting experimental evidence on this point with regard to red blood cells. While 
Sutera et al. (1983) found that the oi increases weakly with external viscosity, Fischer 
et al. (1978) found no effect. These theoretical and experimental results make the point 
that we should not expect intuitively an increase in the 4 with an increase in ',i2 merely 
because the applied shear stress increases. 

It is instructive to compare our results to previously published analyses of flexible 
particles in shear flow, with the caveat that these analyses were three-dimensional and 
limited to small deformations. Cox (1969) and Torza, Cox & Mason (1972) obtained 
a two-term solution to the problem of a liquid drop in a shear flow. Their analysis 
indicates the following. For /3 = 0(1) and k = P/(b',kv) -too (implying low shear 
rates), as the applied shear rate, v,  increases, the deformation, D, and the 6 increase, 
and the angle of orientation Om,, decreases. For the same conditions on /3 and k ,  as /3 
increases the deformation and the angle of orientation decrease, but the tank-treading 
frequency increases. In our analysis of a cylindrical fluid-filled membrane we find 
similar effects of viscosity ratio and applied shear rate on membrane deformation and 
the angle of orientation. But the dependence of tank-treading frequency on the 
viscosity ratio for a liquid drop is inverse of that seen in our membrane model (figure 
3c). The liquid-drop results also state that, for k = 0(1) and / L o o ,  as the applied 
shear rate v increases the deformation approaches 1 + 5/(4/3), the angle of orientation 
with respect to the direction of flow remains at zero while the tank-treading frequency 
increases. We cannot compare directly these results to those we have reported in this 
paper, because our expansions are not valid for large p. However, Rao (1991) has 
performed a brief auxiliary analysis which provides, up to the second term, the steady- 
state solution for an elastic cylindrical membrane with a uniform stretch ratio 
containing a highly viscous Newtonian fluid placed in a slow viscous shear flow of 
another Newtonian fluid of low viscosity. According to that analysis, as /3+co, D = 
rm,,/rmin + 1 + 2p', B,,, + 0 and + :E( 1 - 2/3'), where B,,, is the orientation with 
respect to the direction of flow, and is the tangential membrane velocity. Thus, for 
the two-dimensional elastic membrane in the limit of /3+co, as the applied shear rate 
(or E )  increases D and Bmaz are unaffected to first-order while 6 increases (see (43)). 
However, as ,!? decreases the deformation increases and the tank-treading frequency 
decreases. This is exactly the same behaviour as seen in a liquid drop. In summary, a 
liquid droplet and a flexible cylindrical membrane in general behave similarly in 
response to changes in the applied shear rate and the viscosity ratio. An exception is 
the variation of 6 for small to moderate viscosity ratios @ = O( 1)) and low shear rates 
(k- tco) ;  under these conditions the D of a liquid drop increases with /J, whereas the 
opposite is true for the flexible cylindrical capsule. 

Barthks-Biesel & Sgaier (1985) studied a viscoelastic spherical capsule in a shear 
flow. Their results agree with the findings of the present analysis for a cylindrical 
membrane with regard to the effect of membrane stiffness and applied shear rate on the 
membrane deformation and orientation : as the membrane stiffness increases the 
deformation decreases and the angle of inclination with respect to the direction of the 
flow increases. The effects of variations in shear rate are the opposite of those in 
membrane stiffness, as is the case in our analysis. But no effect of the membrane 
viscosity under steady-state conditions is predicted by our analysis because the 
membrane strain is uniform, which results in a zero viscous force irrespective of the 
membrane shear viscosity. Barthks-Biesel & Sgaier (1985) found an effect of membrane 
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viscosity similar to that of the membrane stiffness on the membrane deformation. Their 
analysis also predicted an oscillatory motion at high membrane or internal fluid 
viscosities. No such behaviour is seen in the present analysis for a cylindrical 
membrane, possibly because this analysis is not valid for sufficiently large viscosity 
ratios. 

There appears to be another striking difference between the results for a spherical 
and a cylindrical membrane. According to Barthes-Biesel & Sgaier (1985), in the case 
of a spherical membrane all field variables are of the same order in E = k-' as this 
parameter approaches zero. This is not the case for our unpressurized cylinder. 
Specifically, for a sphere the deformation (change in the membrane shape) is O(c) and 
the velocity and pressure are also O(e). But for a cylindrical membrane we find that the 
deformation is O(&) and the velocity and external pressure are O(e). The reason for this 
discrepancy is not clear, but it is well known that a change from a three-dimensional 
spherical geometry to a two-dimensional cylindrical geometry may cause profound 
differences in the solutions of seemingly similar problems. (A famous example is 
Stokes' Paradox in the steady creeping flow of a viscous fluid around a fixed cylinder 
versus a fixed sphere (Langlois 1964).) The elimination of the viscous terms from the 
constitutive equation cannot be the cause of the disparity between the cylindrical and 
the spherical models because this disparity exists even for a purely elastic sphere 
(Barthes-Biesel 1980). 
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